Mix and Match

H-454 Proposed by Larry Taylor, Rego Park, NY
(Vol. 29, no. 2, May 1991)
Construct six distinct Fibonacci-Lucas identities such that
(a) Each identity consists of three terms;
(b) Each term is the product of two Fibonacci numbers;
(c) Each subscript is either a Fibonacci or a Lucas number.

Solutions by Stanley Rabinowitz, Westford, MA
Solution Set 1
Here are six identities that meet the requested conditions, although they are probably not what the proposer intended:

$$
\begin{aligned}
& F_{F_{2}} F_{F_{n}}+F_{F_{3}} F_{F_{n}}=F_{F_{4}} F_{F_{n}} \\
& F_{F_{2}} F_{L_{n}}+F_{F_{3}} F_{L_{n}}=F_{F_{4}} F_{L_{n}} \\
& F_{F_{3}} F_{F_{n}}+F_{F_{4}} F_{F_{n}}=F_{L_{3}} F_{F_{n}} \\
& F_{F_{3}} F_{L_{n}}+F_{F_{4}} F_{L_{n}}=F_{L_{3}} F_{L_{n}} \\
& F_{F_{4}} F_{F_{n}}+F_{L_{3}} F_{F_{n}}=F_{F_{5}} F_{F_{n}} \\
& F_{F_{4}} F_{L_{n}}+F_{L_{3}} F_{L_{n}}=F_{F_{5}} F_{L_{n}}
\end{aligned}
$$

Solution Set 2

If numerical identities are acceptable, then we have the following identities (found by computer search):

$$
\begin{aligned}
F_{2} F_{3}+F_{4} F_{8} & =F_{5} F_{7} \\
F_{2} F_{8}+F_{5} F_{11} & =F_{3} F_{13} \\
F_{2} F_{18}+F_{5} F_{11} & =F_{7} F_{13} \\
F_{3} F_{7}+F_{4} F_{8} & =F_{2} F_{11} \\
F_{3} F_{13}+F_{8} F_{18} & =F_{5} F_{21} \\
F_{5} F_{21}+F_{8} F_{34} & =F_{13} F_{29} \\
F_{8} F_{18}+F_{11} F_{21} & =F_{3} F_{29} \\
F_{13} F_{29}+F_{18} F_{34} & =F_{5} F_{47}
\end{aligned}
$$

where all the subscripts are distinct in each example.
Solution Set 3
The numerical identities in Solution Set 2 suggest the following identities involving one parameter, i :

$$
\begin{cases}F_{P_{i+4}} F_{L_{i+1}}+F_{F_{i+2}} F_{L_{i+2}}=F_{F_{i}} F_{L_{i+3}} & \text { if } i \text { is not divisible by } 3 \\ F_{F_{i+4}} F_{L_{i+1}}=F_{F_{i+2}} F_{L_{i+2}}+F_{F_{i}} F_{L_{i+3}} & \text { if } 3 \mid i\end{cases}
$$

We will prove these by proving the equivalent single condition:

$$
\begin{equation*}
F_{P_{i+4}} F_{L_{i+1}}-(-1)^{F_{i}} F_{F_{i+2}} F_{L_{i+2}}=F_{F_{i}} F_{L_{i+3}} \tag{1}
\end{equation*}
$$

To verify identity (1), we apply the known transformation

$$
5 F_{m} F_{n}=L_{m+n}-(-1)^{n} L_{m-n}
$$

to get:

$$
\begin{aligned}
L_{P_{i+4}+L_{i+1}}-(-1)^{L_{i+1}} L_{P_{i+4}-L_{i+1}} & -(-1)^{F_{i}}\left[L_{F_{i+2}+L_{i+2}}-(-1)^{L_{i+2}} L_{F_{i+2}-L_{i+2}}\right] \\
& -L_{F_{i}+L_{i+3}}+(-1)^{L_{i+3}} L_{F_{i}}-L_{i+3}=0
\end{aligned}
$$

This identity can be shown to be true because, of the six terms, it can be grouped into pairs of terms that cancel. Specifically,

$$
\begin{align*}
& L_{P_{i+4}+L_{i+1}}=L_{P_{i}+L_{i+3}} \tag{2}\\
& (-1)^{L_{i+1}} L_{P_{i+4}-L_{i+1}}=(-1)^{F_{i}}(-1)^{L_{i+2}} L_{P_{i+2}-L_{i+2}} \\
& (-1)^{F_{i}} L_{P_{i+2}+L_{i+2}}=(-1)^{L_{i+3}} L_{F_{i}}-L_{i+3}
\end{align*}
$$

Equation (2) follows from the identity

$$
F_{i+4}+L_{i+1}=F_{i}+L_{i+3},
$$

which is straightforward to prove.
To prove equation (3), we use the fact that $L_{-n}=(-1)^{n} L_{n}$, so that

$$
L_{F_{i+2}}-L_{i+2}=L_{-F_{i+2}}+L_{i+2}
$$

since a simple parity argument shows that $F_{i+2}-L_{i+2}$ is always even. Then we note that $F_{i}+L_{i+2} \equiv L_{i+1}(\bmod 2)$, which also follows from a simple parity argument. Thus,

$$
(-1)^{L_{i+1}}=(-1)^{F_{i}+L_{i+2}}
$$

and we see that equation (3) is equivalent to

$$
F_{i+4}-L_{i+1}=-F_{i+2}+L_{i+2}
$$

which we again leave as a simple exercise for the reader.
For equation (4), we have similarly that $F_{i} \equiv L_{i+3}(\bmod 2)$, and hence equation (4) is equivalent to the easily proven

$$
F_{i+2}+L_{i+2}=-F_{i}+L_{i+3},
$$

where again we note that $F_{i}-L_{i+3}$ is always even.
Finally, we note a second identity analogous to (1):

$$
\begin{equation*}
F_{F_{i+1}} F_{L_{i+1}}-(-1)^{F_{i}} F_{F_{i-1}} F_{F_{i+2}}=F_{F_{i}} F_{F_{i+3}} \tag{5}
\end{equation*}
$$

whose proof is similar and is omitted.
Equations (1) and (5) appear to generate all the numerical examples I have found. If we let i have the forms $3 k-1,3 k$, and $3 k+1$, we get the six identities:

$$
\begin{aligned}
& F_{F_{3 k+3}} F_{L_{3 k}}+F_{F_{3 k+1}} F_{L_{3 k+1}}=F_{F_{3 k-1}} F_{L_{3 k+2}} \\
& F_{F_{3 k+4}} F_{L_{3 k+1}}=F_{F_{3 k+2}} F_{L_{3 k+2}}+F_{F_{3 k}} F_{L_{3 k+3}} \\
& F_{F_{3 k+5}} F_{L_{3 k+2}}+F_{F_{3 k+3}} F_{L_{3 k+3}}=F_{F_{3 k+1}} F_{L_{3 k+4}} \\
& F_{F_{3 k}} F_{L_{3 k}}+F_{F_{3 k-2}} F_{F_{3 k+1}}=F_{F_{3 k-1}} F_{F_{3 k+2}} \\
& F_{F_{3 k+1}} F_{L_{3 k+1}}=F_{F_{3 k-1}} F_{F_{3 k+2}}+F_{F_{3 k}} F_{F_{3 k+3}} \\
& F_{F_{3 k+2}} F_{L_{3 k+2}}+F_{F_{3 k}} F_{F_{3 k+3}}=F_{F_{3 k+1}} F_{F_{3 k+4}}
\end{aligned}
$$

which are probably the ones the proposer had in mind.

